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MicroRNAs: emerging driver of cancer 
perineural invasion
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Abstract 

The perineural invasion (PNI), which refers to tumor cells encroaching on nerve, is a clinical feature frequently 
occurred in various malignant tumors, and responsible for postoperative recurrence, metastasis and decreased sur‑
vival. The pathogenesis of PNI switches from ‘low-resistance channel’ hypothesis to ‘mutual attraction’ theory between 
peripheral nerves and tumor cells in perineural niche. Among various molecules in perineural niche, microRNA 
(miRNA) as an emerging modulator of PNI through generating RNA-induced silencing complex (RISC) to orchestrate 
oncogene and anti-oncogene has aroused a wide attention. This article systematically reviewed the role of microRNA 
in PNI, promising to identify new biomarkers and offer cancer therapeutic targets.
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Background
Perineural invasion (PNI) was defined as the presence 
of tumor cells along the sides of nerves and/or inside 
the epineurial, perineurial and endoneurial spaces of 
the neuronal sheath [1, 2], which was first proposed 
by Drapiewski et  al. more than a century ago and was 
regarded as the fifth route of cancer spread in addition 
to four well-known ways: direct invasion to surround-
ing tissues, lymphatic metastasis, hematogenous metas-
tasis and seeding along body cavities [1]. PNI can occur 
in many malignancies, including head and neck can-
cer, pancreatic ductal adenocarcinoma, gastric carci-
noma, colorectal cancer, breast cancer, cervical cancer, 
prostate cancer, melanoma and so on [3–5]. The occur-
rence of PNI in tumors not only brings about pain and 

dysfunction of involved organs, but it makes curative 
resection within safe margins difficult and residual tumor 
cells in or around nerves may favor local postoperative 
recurrence, infiltration and metastasis, which is identi-
fied as a vital contributor to the poor clinical prognosis 
[6–8]. So, tremendous amount of research was launched 
to comprehend pathogenesis of PNI and the cognition to 
PNI was deepening.

The initial hypothesis of PNI is the ‘low-resistance 
channel’ that tumor cells spread passively along the 
connective tissues covered the nerves, or through the 
small nerve branches and the perforating vessels of 
the nerve beams, which is presented relying on the 
direct observation of the ultrastructure due to techni-
cal restrictions [9, 10]. Recently, the development of 
molecular biology techniques and new invasion models 
has deepened the perception of PNI, whose formation 
is not a consequence of single factor, but a continuous, 
elaborate and active ‘mutual attraction’ multistep pro-
cess among malignant cells, peripheral nerves and stro-
mal cells in perineural niche. Once tumor cells invaded 
toward nerve, they created tumor microenvironment. 
Secreted proteins from tumor encouraged neurite out-
growth, remodeling and axonogenesis directing at the 
neoplastic front, which in turn initiated a bi-directional 
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communication between tumor cells and nerve [7]. 
During this process, nerve injury and repair were 
involved, which making them more vulnerable to 
tumor invasion [7, 11]. Dying nerve secreted a series of 
neurotransmitters (catecholamines, acetylcholine and 
neuropeptides), membrane-anchored proteins (MUC1 
and L1CAM), matrix metalloproteinases (MMPs), non-
coding RNAs (miRNA, lncRNA and cirRNA), neuro-
trophic factors (GDNF, NGF, BDNF, NT3 and CSF1) 
and chemokines (CXCL12, CCL2, CCL5 and CX3CL1), 
which could be released in niche or specifically bind 
with their receptors (GFRα1, TRKA, TRKA, TRKC, 
CSF1R, CXCR4, CCR2, CCR5 and CX3CR1) expressed 
in tumor cell, thus favoring both the inflammatory 
response in niche and the tendentious movement of 

the tumor toward the nerve. Further, tumor-associated 
inflammation recruited stromal cells, such as fibro-
blasts, macrophages, regulatory T cells (Treg cells) and 
mast cells into the perineural niche, which established 
a bridge during the crosstalk between tumor cells and 
nerve [12, 13] (Fig. 1). Among these molecules, the role 
of miRNA in the PNI of malignance was thrown into 
sharp focus recently [14, 15]. Herein, we summarized 
the possible direct or indirect dysregulated miRNAs 
along with identified molecular cues involved in nerve 
remodeling and perineural spread, reviewed crosstalk 
between miRNAs and other PNI related molecules as 
well as stromal cells to guide target treatment decision-
making regarding using the new miRNA biomarker in 
cancer patients.

Fig. 1  Schematic representation of perineural niche facilitating PNI. Various molecules (neurotrophic factors, neurotransmitters, chemokine, MMPs) 
and cells (fibroblasts, macrophages, Treg cells, mast cells) in the nerve-tumor niche impelled tumor cell displayed a tendency to encroach on nerves
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Biogenesis of miRNAs
MiRNAs are a class of single-stranded non-coding RNAs 
with a length of 18–25 nucleotides. The biosynthesis of 
miRNAs is partitioned into canonical and non-canon-
ical pathways [16, 17]. As noted in Fig.  1, the canonical 
pathway of miRNAs formation starts with transcription, 
during which primary miRNA precursors (pri-miRNAs) 
are generated by RNA polymerase II (Pol II) and III [18]. 
Microprocessor complex composed of Drosha (RNA-
specific endoribonuclease III) and DGCR8 (double 
stranded RNA binding protein) excises the hairpin struc-
ture in the pri-miRNAs, and a 70-nucleotide stem loop 
known as precursor miRNA (pre-miRNAs) is produced 
in the nucleus [19]. Then, nuclear export protein expor-
tin 5 (Exp5) forming complex with the GTP-binding 
nuclear protein Ran (Ran-GTP) exports pre-miRNAs to 
the cytoplasm, where the pre-miRNA is cleaved by Dicer, 
a helicase-RNase III hybrid, generating a mature dou-
ble-stranded miRNA duplex [20, 21]. Subsequently, the 
guide strand of the miRNA duplex is incorporated onto 
argonaute (Ago) protein complex forming RNA-induced 
silencing complex (RISC), and the passenger strand is 
deemed non-functional and degraded once released [22].

The non-canonical pathways of miRNA biogenesis 
include Drosha-independent and Dicer-independent 
pathways [23, 24] (Fig.  2). Drosha-independent mir-
tron genes do not undergo Drosha cleavage but demand 
mRNA splicing and lariat debranching (intron gene), 
forming a stem-loop structure analogous to the pre-
miRNA synthesized in the canonical approach [25, 26]. 
The Dicer-independent pathway, another non-canonical 
miRNA biogenesis approach, is mainly involved in the 
generation of miR-451 family, which is processed by 
the microprocessor complex (Drosha/DGCR8) in the 
nucleus. Then, a short pre-miRNA was generated and 
transported to the cytoplasm by Exp5. The pre-miR-451 
is cleaved by Ago2 and trimmed by PARN, engendering 
the mature miR-451, which integrates into Ago to consti-
tute the functional core of RISC [25].

After the formation of RISC complex, ‘the seed’ 
domain at the 5ʹ end could recognize and interact with 
the 3ʹ-untranslated region (3ʹ-UTR) of its target gene 
through complementary base binding [27, 28], inducing 
mRNAs degradation or translational repression of target 
mRNAs, leading to ‘gene silence’ and orchestrating broad 
physiological processes, including cell proliferation, dif-
ferentiation, apoptosis (programed cell death), cell cycle, 
tissue development, energy biosynthesis, cellular metab-
olism and pathological process, such as cardiovascular 
disorders, neurological disease, endometriosis and diabe-
tes [29–31].

Besides, a tremendous amount of document reported 
that miRNAs were also involved in the malignant 

transformation and tumor progression by exerting piv-
otal effects on oncogenes and suppressor genes through 
a series of signaling axis including NF-κB, MAPK, PI3K/
AKT/mTOR and Wnt/β-catenin [32, 33].

MiRNA alterations associated with PNI
MiRNA promoting PNI
MiR‑21
MiR-21, encoded by the MIR21 gene located on 17q23.2, 
is one of the most studied miRNAs in various fields, 
including growth and development, stem cell biology, 
aging and oncology [34]. It can also participate in nerve 
remodeling through orchestrating growth signaling, 
accelerating axon growth [35] and inhibiting neuron 
death [36]. Sakai et  al. confirmed that miR-21 was con-
sistently upregulated after peripheral nerve injury in the 
dorsal root ganglion (DRG) and was related to neuro-
pathic pain [37]. Elevated miR-21 expression was regu-
lated by IL-6 in the DRG following partial sciatic nerve 
ligation [38]. In addition, miR-21 was reported to be 
highly expressed in nerve-derived tumors, including 
glioblastoma, malignant peripheral nerve sheath tumor, 
vestibular schwannomas, glioblastoma multiforme [39–
41]. In 2012, Teplyuk et al. certified that compared with 
tumors in remission and nonneoplastic conditions, the 
level of miR-21 was significantly increased in the cerebro-
spinal fluid of lung and breast cancer patients with brain 
metastasis using microRNA profiles [42]. Later, Singh 
et  al. used patient-derived stem cell lines from lung-to-
brain metastases to investigate the modulatory effect 
of STAT3 in brain metastasis initiating cells and found 
STAT3 and miR-21 functioned as cooperative orches-
trators of stemness and tumor initiation in lung-derived 
brain metastases [43]. Loredana et al. demonstrated that 
miR-21, secreted by melanoma cells in small extracellu-
lar vesicles contributed to brain metastasis of melanoma 
patients [44]. These suggested that tumor cells expressing 
miR-21 had a disposition to migrate towards brain tissue.

Further, increasing evidence showed that miR-21 con-
tributed to the PNI of certain non-neural origin tumors. 
Yu and coworkers demonstrated that miR-21 might pro-
mote PNI of oral carcinoma through inhibiting PTEN 
[15]. Robyn et  al. authenticated that miR-21 was higher 
expressed in PNI group than in non-PNI group of pros-
tate cancer [45]. Adam et al. identified that miR-21 com-
bining with miR-23a and miR-27a posed as cooperative 
repressor of a network of tumor-suppressor genes includ-
ing PDCD4, B-cell translocation gene 2 (BTG2) and 
neural precursor cell expressed developmentally down-
regulated 4-like (NEDD4L) in PNI of pancreatic cancer. 
Inhibition of miR-21 could reduce cell proliferation of 
pancreatic ductal adenocarcinoma (PDAC) in  vitro and 
the growth of xenograft tumor in  vivo and synergistic 
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inhibition effects could be observed via simultaneously 
silencing miR-23a and miR-27a [46]. In cholangiocarci-
noma, miR-21 could potentially inhibit RECK expression, 

thus facilitating PNI [47]. This indicated that miR-21 
potentially contributing to PNI, however, the detailed 
mechanisms of miR-21 on PNI, such as alteration in 

Fig. 2  Biogenesis of miRNAs. Canonical microRNA biogenesis, miRNAs formation starts with transcription, during which pri-miRNAs are generated 
by RNA Pol II and III. Microprocessor complex composed of Drosha and DGCR8 excises pri-miRNAs, and pre-miRNAs is produced in the nucleus. 
Then, the nuclear Exp5 forming complex with the Ran-GTP exports pre-miRNAs to the cytoplasm, where the pre-miRNA is cleaved by Dicer, 
generating a mature double-stranded miRNA duplex. Subsequently, the guide strand of the miRNA duplex is incorporated onto Ago protein 
complex, forming RISC to recognize and interact with the 3’-UTR of their targets. Conversely, the passenger strand is deemed non-functional and 
degraded once released. Drosha-independent miRNAs biogenesis, the Drosha-independent mirtron genes do not undergo Drosha cleavage but 
demand mRNA splicing and debranching forming a stem-loop structure analogous to the pre-miRNA synthesized in the canonical approach. 
The subsequent generation process of miRNAs is similar to canonical pathway. Dicer-independent miRNAs biogenesis, the Dicer-independent 
pathway is mainly involved in the generation of miR-451 family, which is processed by the microprocessor complex Drosha/DGCR8 in the nucleus. 
Then, a short pre-miRNA was generated and transported to the cytoplasm by Exp5. The pre-miR-451 is cleaved by Ago2 and trimmed by PARN 
engendering the mature miR-451, which integrated into Ago to constitute the functional core of RISC
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specific gene expression levels or domination the acces-
sibility of signaling, has still not been characterized.
MiR‑99 family: miR‑99 and miR‑100
MiR-99 family, whose origin can be traced back to the 
bilaterian ancestor, is universally known as one of the 
oldest miRNA families [48]. Current studies have found 
three members of the miR-99 family: miR-99a, miR-99b, 
miR-100 [49]. Robyn et  al. discovered that the level of 
miR-99b and miR-100 were higher in PNI group than 
in non-neurotropic prostate cancer using microRNA 
microarray and Affymetrix Genechips, moreover, con-
curring with above data, neurotropic prostate cancer 
cells were inclined to exhibit a lower metallothionein 
level relevant to non-invasive tumor cells [45]. Addition-
ally, macrophages can be classified into M1 and M2 phe-
notypes. M1 polarized macrophages possess anti-tumor 
functions whereas M2 tumor associated macrophages 
(TAMs) promote tumor growth [50]. The level of miR-
99a and miR-99b are found to be enriched in M2 mac-
rophages compared to unstimulated macrophages [51]. 
Jaiswal et al. demonstrated that miR-99a overexpression 
could downregulate the expression of M1 macrophages 
markers [52]. And the expression of exosome-derived 
miR-99a was proved to be upregulated in M2 mac-
rophages [53]. Wang et  al. also reported that miR-100 
promoted the markers expression of M2-associated 
phenotypes in macrophages [54]. Immunohistochemi-
cal analysis revealed that endoneurial macrophages are 
abundant in nerves invaded by cancer compared with 
normal nerves. Nerve derived macrophages, recruited 
and activated by cancer cells in neuro-tumor microenvi-
ronment have been demonstrated to assist tumor cells in 
invading towards nerve through secreting GDNF in vitro 
[55]. Together these studies indicated that association 
between M2 macrophages and miR-99 family might be a 
potential mechanism for modulating PNI and the exact 
mechanism awaited further investigation.

MiR‑17
MiR-17 belongs to the highly conserved polycistronic 
miR-17–92 cluster, which locates in chromosome 13 
open reading frame 25, encoding 6 mature miRNA mol-
ecules (namely, miR-17, miR-18a, miR-19a, miR-19b, 
miR-20a and miR-92a) [56]. MiR-17 contributed to the 
onset of multiple sclerosis, a neuro-destructive auto-
immune disease through augmenting TH17 responses 
elicited by the activation of PI3K–AKT–mTOR axis 
[57]. In a spinal cord injury (SCI) model, overexpres-
sion of miR-17 was reported to facilitate glial scar for-
mation and suppress the neurofilaments regeneration 
through targeting PTEN and stimulating the PI3K/
Akt/mTOR pathway [58]. In primary sensory neu-
rons, inhibition of miR-17-5p by PEITC could promote 

neurite growth [59]. MiR-17 may be associated with the 
increased lumbar radicular pain after disc herniation, 
possibly via a TNF-driven pro-inflammatory mecha-
nism [60]. Downregulated miR-17-5p involved in nerve 
cell damage [61]. Gene Expression Omnibus (GEO) 
data set of microarray reveled that the expression level 
of miR-17-5p in patients with brain metastasis was sig-
nificantly upregulated than that in situ carcinoma, indi-
cating that it might participated in the brain metastatic 
process of breast cancer [62]. A recent study validated 
that miR-17 stimulated by GFRα2 might exert a pro-
moting PNI effect by downregulating tumor suppressor 
gene PTEN in pancreatic cancer, which provided new 
insights for future research into the role of miR-17 in 
PNI [63].

MiR‑23a/24–2/27a family
The miR-23a/24–2/27a cluster, an intergenic miRNA 
cluster, is located at chromosome 19p13.12 in the verte-
brate genome and encodes an about 2159nt pri-miRNA 
transcript embodying three functional miRNAs (namely, 
miR-23a, miR-24 and miR-27a) [64]. The members of 
this cluster are involved in cell differentiation and cycle 
control [65]. In peripheral nerve injury, miR-24-3p could 
be squeezed by TNXA-PS1 to upregulate the expression 
of specificity phosphatase 1 (Dusp1), thus accelerating 
migration of schwann cells, a key component in neural 
repair and regeneration and orchestrating the cues for 
PNI of tumor [7, 66]. MiR-24 suppressed oligodendro-
cyte precursor cell differentiation, which allocated nutri-
ents to neurons in spinal injury through upregulating 
the level of PDGFRa, NG2, IL-6 and TNF-α and down-
regulating the expression of MBP and ADM [67]. Simi-
larly, Deng et  al. noted that miR-24 inhibitor activated 
the expression of HMOX1, thereby decreasing oxidation 
and inflammatory response as well as improving neuro-
logical functional deficits in the rats with cerebral vasos-
pasm after subarachnoid hemorrhage [68]. In primary 
malignant brain tumor glioblastoma, miR-23 was down-
regulated along with its target ATP5A1 or ATP5B high 
expression by miRNA microarray [69]. However, miR-24 
was demonstrated to favor proliferation, invasion and 
viability of glioma cells by targeting ST7L and activating 
β-catenin/Tcf-4 signaling axis [70, 71]. An integrated sta-
tistic analysis authenticated that miR-23a collaborating 
with miR-27a could promote PNI in PDAC [46]. In pros-
tate cancer, higher expression of miR-24-2 and miR-27a 
was validated to experience a transformation from non-
PNI prostate tumor to a tumor with PNI [45]. Thus, miR-
23a/24-2/27a cluster could use as a potential diagnostic 
signature for PNI of tumor patients.
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MiR‑15 family
Similar to above pro-PNI miRNAs is the miR-15 family, 
which contains six members (miR-15a, miR-15b, miR-
16-1, miR-16-2, miR-195, miR-497) and are encoded by 
intron region of the DLEU2 transcript positioned in the 
antisense orientation of the 13q14.3 locus [72]. Recent 
discoveries confirmed ectopic expression of miR-15 
family by cancer cells correlates with nerve invasion. As 
corroborated in prostate cancer, increased expression of 
miR-15a-2 and miR-195 was detected, which might be 
attributable to PNI through inhibiting metallothionein 
expression [45]. Also, miR-16 overexpression induced 
upregulation of Bcl-2 and suppression of apoptosis, and 
miR-16 inhibitor enhanced the sensitivity of U251MG/
TR cells to temozolomide in neurogenic glioma [73]. 
Promotion of miR-497 concurrent with increased IGF1R 
and IRS1 conferred glioma cells resistance to temozolo-
mide [74]. Conversely, Yang et  al. reported that miR-16 
impaired invasiveness of human glioma cell by downreg-
ulating the expression of NF-κB1 and MMP9, which were 
prominent promoters of PNI [75]. Krell et al. found that 
miR-16-5p mimics greatly increased sensitivity of A172 
to temozolomide [76]. MiR-15a/16 and miR-132 could 
synergistically suppress proliferation, migration and inva-
sion via directly targeting Sox5 in pituitary tumor [77]. 
Concurrent upregulation of miR-195 and miR-15b could 
suppress migration and invasion of glioma cell via post-
transcriptionally downregulating SALL4 expression [78]. 
Treatment with miR-195-5p inhibitor could effectively 
increase YAP1 and TEAD1 expression, thus promot-
ing glioma progression [79]. Upregulation of miR-195 
could competing sponge FASN to diminish proliferation, 
migration and invasion of IOMM-Lee cells in malignant 
meningioma [80]. In addition, inhibition of miR-15a/16 
alleviated neuropathic pain through upregulating the 
expression of GRK2, and GRK2 silence reversed the pro-
tective effects of miR-15a/16 inhibition in neuropathic 
pain [81]. MiR-195 level was elevated in a rat infraorbi-
tal nerve chronic constriction injury model along with 
decreased Patched1 expression [82]. Loss-of-miR-497 
could inhibited OGD-mediated N2A cell death after 
transient focal cerebral ischemia in mouse brain [83].

Other miRNA promoting PNI
A list of miRNAs related to PNI of prostate cancer was 
screened out by miRNA microarray, including miR-224, 
miR-10 (a/b), miR-125b (− 1/2), miR-30a/b/c-2, miR-
26a (− 1/2), miR-126, miR-145, miR-151, miR-181a-1 
and miR-191 in a recent study [45]. In addition, under 
the chronic hypoxia condition, the transcription of miR-
191 could be initiated by increasing hypoxia-inducible 
factor-1 (HIF-1) and subsequent bind to HRE2, thus 
boosting PNI of pancreatic cancer, eventually [84]. High 

expression of miR-128-3p was proved to be essential for 
PNI, and miR-128-3p could regulate EMT by directly 
sponging its downstream target gene FOXO4 to activate 
TGF-β/SMAD and JAK/STAT3 axis in colorectal cancer 
[85]. Li et al. verified that miR-3679-5p interacting with 
lncRNA-CYTOR might enhance PNI through encour-
aging MACC1 expression in colorectal cancer [86]. 
In sinonasal squamous cell carcinoma, miR-9-3p was 
reported to be overexpressed and relevant to PNI [87]. 
Similarly, miR-205 overexpression was also revealed in 
cutaneous squamous cell carcinoma and closely associ-
ated with PNI [88]. In gastric cancer, miR-589-3p could 
interact with plasma hsa_circ_0000419 to promote PNI 
[89] (Fig. 3).

MiRNA suppressing PNI
MiR‑31
The miR-31, located in chromosome band 9p21.3, is a 
momentous peacemaker in fertility, embryonic develop-
ment, bone formation, myogenesis and immune system 
function and is characterized as a tumor suppressor 
[90]. MiR-31 could repress invasiveness and the migra-
tory ability of glioblastoma cells by regulating the level of 
RGS4, EMP1 and TGFBR1 [91]. It was also validated that 
the enforced expression of miR-31 significantly potenti-
ated the cytotoxic effects of temozolomide on the glio-
blastoma cells through the inhibition of STAT3 activation 
[92]. Significantly downregulation of miR-31 occurred 
in brain-metastatic carcinomas through examining the 
miRNA expression of 3 primary colorectal cancers and 
matched brain-metastatic carcinomas [93]. During the 
process of nerve remodeling, miR-31 level was signifi-
cantly elevated at 7  days in three nerve injury models, 
including ventral root transection, dorsal root transec-
tion and spinal nerve ligation [94]. Consistently, Xu et al. 
reported that miR-31-5p was up-regulated in the serum 
of rats with spinal nerve ligation surgery at days 3, 7 and 
13 post-surgery [68].

A recent research in intrahepatic cholangiocarci-
noma noted that PNI tumor with low miR-31 expression 
showed increased expression of BAP-1 and PBRM-1, 
indicating that miR-31 might repress PNI through dis-
turbing the expression of BAP-1 and PBRM-1 [95], and 
delivery of agomir-31 might be an available anti-PNI 
therapeutic strategy in cholangiocarcinoma.
 
MiR‑133
MiR-133, identified as an antioncogene in various types 
of cancers may also have a role in anti-PNI [96, 97]. In 
pancreatic cancer, miR-133a could exert the anticar-
cinogenic activity by directly targeting FSCN1 [98], 
conversely, inhibition of miR-133a by LncRNA XIST 
could upregulate EGFR expression to accelerate PNI 
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of pancreatic cancer [99]. Chang et  al. found that miR-
133a-3p mimic upregulated the level of p-p38 MAPK 
in peripheral nerves and induced neuropathic pain, and 
administration of miR-133a-3p inhibitor could alleviate 
neuropathic pain [100]. Raheja et al. identified that com-
pared with healthy control, miR-133a-3p was upregu-
lated in patients with amyotrophic lateral sclerosis, a 
debilitating neurodegenerative disorder [101]. Besides, 
approximately 50% decrease of miR-133a level was 
detected at 3 and 6  months after sciatic nerve entrap-
ment using RT-PCR analysis [102]. Lu et al. revealed that 

miR-133b could accelerate neurite extension and axon 
regeneration through modulating RhoA expression in 
primary cortical neurons [103]. Besides, miR-133b has 
been charactered as a specific miRNA of ischemic cer-
ebral, and was closely associated with neurite remodeling 
and functional recovery [104]. Kim et al. noted that miR-
133b was abundantly and specifically expressed in mam-
malian midbrain dopaminergic neurons, and it played a 
vital role in the pathogenesis of Parkinson’s disease [105]. 
Upregulation of miR-133b suppressed NF-κB activation 
and oxygen–glucose deprivation-caused cell apoptosis, 

Fig. 3  Possible regulatory mechanism of miRNAs in PNI of tumor. Pro-PNI miRNAs: miR-15a-2, miR-195, miR-224, miR-10 (a/b), miR-125b (− 1/2), 
miR-30a/b/c-2, miR-26a (− 1/2), miR-126, miR-145, miR-151, miR-99b, miR-100, miR-181a-1, miR-191, miR-21, miR-23a, miR-27, miR-17, miR-191, 
miR-3679-5p, miR-9-3p and miR-205, miR-589-3p, miR-128-3p, miR-24 and miR-27a. Anti-PNI miRNAs: miR-31, miR-370, miR-216, miR-124-3p, 
miR-133a, miR-204, miR-137 and miR-7. Dual role of miRNAs family in PNI: miR-200 family, miR-141 (pro-PNI), miR-429 (anti-PNI); Let-7 family, let-7a 
(anti-PNI), let-7d and Let-7g (pro-PNI)
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thereby alleviating neuronal injury in cerebral ischemia 
[106]. Taken together, these findings showed that it was 
possible that miR-133 could trigger PNI by modulation of 
neural regeneration and tumor cell invasiveness.

MiR‑204
MiR-204, which stems from the sixth intron of the tran-
sient receptor potential melastatin 3 (TRPM3) and its 
expression is regulated by the promoter of TRPM3, has 
been verified to participate in eye development and neu-
ral differentiation processes [107]. The data from micro-
array analysis revealed that miR-204 was highly abundant 
and contributed to growth and development of the axons 
in sympathetic neurons [108]. Whereas, another study 
revealed that overexpression of miR-204 curbed the 
length and extension of neurites in dorsal root ganglia 
neuron [109]. In addition, Wang et al. delineated that the 
level of miR-204 was increased in rats model with optic 
nerve injury, and it enhanced the apoptosis of retinal cells 
through upregulating the expression of MyD88, TLR4 
and NF-κB and downregulating the level of neuroprotec-
tive factor GAP-43 [110]. Inhibitor of miR-204 contrib-
uted to the repair of injured nerves by disinhibiting Nrn1 
expression and derepressing the pro-apoptotic function 
of schwann cells [111]. MiR-204 was also involved in age-
associated degradation in hippocampal function through 
negatively regulating EphB2 and NMDAR-dependent 
LTP [112]. Significant decrease of miR-204 was observed 
in malignant peripheral nerve sheath tumors [113]. Data 
from online tools and mechanistic cues revealed that 
miR-204-dependent MALAT1 restrained PNI through 
targeting to 3’UTR of CXCR4 in human hilar cholangio-
carcinoma, providing the evidence that miR-204 might 
act as a potential anti-PNI therapeutic strategy in cholan-
giocarcinoma [114].

Other miRNA suppressing PNI
MiR-370, extensively covered as a tumor-suppressor 
in numerous tumors, has a low expression in oral squa-
mous cell carcinoma tissue with PNI, and it gives scope 
to carcinogen effect through targeting IRS-1 [115]. MiR-7 
was also demonstrated to inhibit PNI of OSCC through 
targeting RAF-1 and PIK3CD [116]. Helena et al. found 
decreased miR-137 expression in oropharyngeal cancer-
ous tissues by analyzing the miRNA expression in paired 
cancerous and normal tissues from 77 HNSCC patients, 
and lower miR-137 levels correlated with increased inci-
dence of PNI [117]. MiR-124-3p, negatively modulated 
by lncRNA OGFRP1, was affirmed to impair PNI of 
prostate cancer through regulating SARM1 level [118]. 
This was consistent with biological properties of miR-
124-3p, which was abnormally expressed in many malig-
nancies and commonly acted as a tumor suppressor. For 

example, in prostate cancer, miR-124 attenuated growth 
and invasion through PACE4 pathway [119]. In breast 
cancer, miR-124 has been authenticated to restrain cell 
growth and migration via targeting flotillin-1 [120]. In 
hepatocellular carcinoma, miR-124 orchestrated EMT 
and cytoskeletal events through suppressing oncogenes 
ROCK2 and EZH2, ultimately curbing invasion and 
metastasis [121]. Moreover, miR-216 could target 3’-UTR 
region of YB-1, implicating in decreased expression of 
MMPs, and disrupting PNI of pancreatic cancer, eventu-
ally [122] (Fig. 3).

Dual role of miRNA in PNI
MiR‑200 family
The miR-200 family, consisting of five members (includ-
ing miR-200a, miR-200b, miR-200c, miR-141 and 
miR-429) was separated into two clusters, namely miR-
200a/200b/429 (located on chromosome 1p36) and miR-
141/200c (located on chromosome 12p13) based on the 
different genomic loci and regarded as hallmarks of epi-
thelial cells [122]. MiR-200 family induced neurite for-
mation while inhibition of miR-200 boosted neuronal 
proliferation through targeting SOX2 and KLF4 genes 
[123, 124]. Overexpression of miR-429/200a/200b could 
attenuate CoCl2-induced neuronal apoptosis through 
blocking Notch1 signaling pathway [125]. Illumina 
microRNA microarray chip analyses of primary gastric 
adenocarcinoma and matched brain metastatic adeno-
carcinoma revealed that miR-200b-3p and miR-141-3p 
was significantly upregulated in brain metastatic lesions, 
and the expression of ZEB2, the top ranked target gene 
for miR-200b-3p and miR-141-3p in online microRNA 
database was markedly downregulated in some brain 
metastatic samples, thereby, scholars speculated that 
expression of miRNA-200 family members were corre-
lated with brain metastases of gastric adenocarcinoma 
[126]. 4 members of miR-200 family including miR-200a, 
miR-200b, miR-200c and miR-141 was highly elevated 
in cerebrospinal fluid samples with brain metastasis, but 
not in the control or glioblastoma cases, allowing dis-
crimination between primary brain cancer and meta-
static brain tumors [42]. The result of bioinformatics 
analysis by Tao et  al. affirmed that miR-141 interacting 
with circ_0000419 endowed tumor cells with PNI in gas-
tric cancer [89], however, another member of miR-200 
family, miR-429 was corroborated to arrest PNI through 
targeting neurotrophin-3 (NT-3) in pancreatic cancer 
[14], suggesting the members of miR-200 family had the 
potential to be novel biomarkers for PNI screening.
 
Let‑7 family
Let-7 was first identified in C. elegans by Reinhart et al. 
[127]. Subsequently, let-7 homologs were discovered 
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in varieties of species scoping from vertebrates to mol-
lusks [127]. In humans, 10 mature subtypes of the let-7 
family have been described (let-7a, let-7b, let-7c, let-
7d, let-7e, let-7f, let-7 g, let-7i, miR-98 and miR-202), in 
which mature let-7a and let-7f were coded by precursor 
sequences let-7a-1, let-7a-2, let-7a-3 and let-7f-1, let-7f-2, 
respectively [128]. Let-7 has been already shown to be 
important for both neurogenesis and neural regeneration. 
It could affect the phenotype of schwann cells by directly 
targeting the nerve growth factors including NGF and 
BDNF to facilitate the axon growth and function recov-
ery after sciatic nerve injury [129, 130]. Ntn1, one of 
the most studied axon guidance factors, could build the 
neural conduction pathways and direct the migration 
of neuronal cells through binding to its receptor Dcc. 
Let-7 could control the amount of Ntn1 secretion from 
schwann cells to regulate nerve regeneration [131]. let-7 
levels were elevated in cerebrospinal fluid from patients 
with Alzheimer’s disease, and in  vitro let-7 could be 
released by dying neurons, where it initiated neuro-
degeneration through neuronal TLR7 signaling [132]. 
However, Fernández et  al. reported that let-7 blocked 
the Irs2-driven formation of rosettes through repressing 
the p53 pathway signaling in the early telencephalic neu-
roepithelium [133]. Besides, dysregulation of let-7 family 
was considered to associate with PNI of tumor, and their 
biological role in PNI is inconsistent. For instant, Bárbara 
et  al. confirmed that downregulation of let-7a was rele-
vant to PNI of oral cavity and oropharynx squamous cell 
carcinoma [134]. In HNSCC, it was reported by Tomasz 
et  al. that increased let-7d collaborating with decreased 
miR-205 expression was connected to the presence of 
PNI [135]. In prostate cancer, let-7 g overexpression was 
demonstrated to boost PNI [45], however, the functional 
effect of let-7 family in PNI is not systematic or sufficient, 
so it deserved to be investigated further.

MiR‑199 family
The miR-199 family consists of two individual miRNAs, 
miR-199a and miR-199b, which was first cloned from 
human osteoblast sarcoma cells and mouse skin tissues 
by Lagos-Quintana et  al. in 2003. Bao et  al. illustrated 
that miR-199a-5p could defend the spinal cord against 
ischemia/reperfusion-mediated injury through inhibit-
ing ECE1 expression in rats [136]. However, Gao et  al. 
revealed that decreased miR-199a protected against neu-
ronal damage and contributed to functional recovery 
through upregulation of SIRT1, deacetylation of p53 and 
the activation of mammalian-target-of-rapamycin sign-
aling pathway in Spinal Cord Injury of rats [137–139]. 
Inhibition of miR-199a could encourage neuroprotec-
tion through upregulating Sirtl expression in the brain 
ischemic tolerance of rats [140]. Lv et  al. demonstrated 

that miR-199a could be sponged by lncRNA-Map2k4, 
which subsequently upregulated FGF1 expression and 
stimulated neuron growth of mouse spinal cord [141]. 
Studies suggested that abnormal expression of miR-
199 also interposed PNI of tumor. In prostate cancer, it 
was reported that miR-199 was highly expressed in PNI 
tumors relevant to non-PNI tumors [45], oppositely, low 
miR-199b was associated with the presence of PNI in 
head and neck squamous cell carcinoma [142] (Fig.  3) 
(Table 1).

Crosstalk between miRNAs and other PNI related 
molecules
Neurotrophic factors
Neurotrophic factors, including nerve growth fac-
tor (NGF), glial cell line-derived neurotrophic factor 
(GDNF) and NT3 secreted from nerve were rich in the 
nerve-tumor microenvironment and acted as prominent 
promoters in PNI through respectively combining with 
their receptor, tyrosine kinase A receptor (TRKA), GDNF 
family receptors (GFR) and NT-3, expressed by tumor 
cells of pancreatic, breast and bile duct carcinomas [7]. 
Montalban et al. reported that NGF could provoke phos-
phorylation of AKT and MAPK in a miR-21-dependent 
manner, thus increasing VEGF levels [143]. Rocío et  al. 
revealed that NGF could negatively regulate miR-23 to 
accelerate ovarian cancer progression [144]. Upregula-
tion of miR-205, a pro-PNI miRNA induced by GDNF, 
was certificated to promote proliferation and migration 
in glioma cell [145]. In addition, miR-30a orchestrated 
by Wnt/β-catenin pathway could advance glioma cell 
invasion through repressing NCAM [146]. All the afore 
mentioned studies indicated that the crosstalk between 
neurotrophic factors and miRNAs might manipulate 
the tumor PNI process, while underlying mechanisms 
awaited further investigation in the future.
 
Matrix metalloproteinases (MMPs)
MMPs contribute to PNI primarily via extracellular 
matrix (ECM) degradation and the activation of pro-
invasion factors. Recent investigation showed that miR-
124 overexpression hindered MMP-9 synthesis and 
impeded invasion of renal cell carcinoma [147]. MiR-
141 downregulation could boost invasion and migration 
ability via MMP-2 and MMP-9 in bladder cancer [148]. 
In liver cancer, miR-26 could suppress growth of tumor 
cells through sensitizing PI3K/Akt and NF-κB/MMP-9/
VEGF pathways [149]. MiR-21 promoted migratory and 
invasive potential of hepatocellular carcinoma by upreg-
ulating MMP-2 and MMP-9 expression [150]. MiR-15 
reduced glioma cell invasion and angiogenesis via tar-
geting MMP-3 [151]. MiR-200 family and let-7 could 
regulate the MMP-14 expression, which was pivotal for 
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the cleavage of ECM components and the activation 
of proMMP-2 in pancreatic cancers [152]. However, 
whether the interplay between the miRNAs and MMPs 
could encourage the initiation and development of PNI in 
tumors was still unknown.

Chemokine
Presently, attention has been focused on the association 
between chemokine signaling axes and miRNAs in malig-
nant tumors. CXCL12 and its receptor CXCR4 is highly 
expressed in the perineural niche of neurotropic tumors, 
including pancreatic, prostate and breast cancer. Shiri 
et al. demonstrated that CXCR4 advanced neuroblastoma 
growth and therapeutic resistance via miR-15/16-medi-
ated ERK and BCL2/Cyclin D1 pathways [153]. MiR-204 
accelerated the migration and invasion of lung cancer 
via CXCR4 [154]. In colorectal cancer, CXCL12/CXCR4 
mediated miR-125b to induce invasion and confer 5-fluo-
rouracil resistance [155], or sequestered miR-133a to 
promote inflammation through the activation of RhoA 
signaling [156]. Inhibition of CXCR4 induced cell apop-
tosis of acute myeloid leukemia through upregulation 
of miR-15/miR-16, which targeted BCL-2, MCL-1 and 

cyclin-D1 [157]. In pancreatic cancer, CXCR4 negatively 
regulated let-7a to elevate HMGA2 expression, hence 
promoting cell proliferation, metastasis and chemosensi-
tivity [158].

Reciprocal interaction between PNI‑related 
miRNAs and microenvironment in PNI
Copious research have disclosed the involvement of miR-
NAs in communication between tumor cells and stromal 
cells, including Treg cells, tumor-associated macrophages 
(TAMs) and cancer-associated fibroblasts (CAFs), which 
constitutes a bridge and is conducive to cancer cells influ-
encing and hijacking the physiological processes, and 
establishing a favorable niche to engraft, expand and 
evade the immune surveillance and realizing PNI [159] 
(Fig. 4).

MiR23a could be conveyed from IGR-Heu (lung car-
cinoma cell line) and K562 (Leukemia cell line) to niche 
via microvesicles, thereby inactivating natural killer 
(NK) cells through directly targeting CD107 expression 
and impairing their cytotoxicity against tumor cells 
[160]. MiR-145, another pro-PNI miRNA, generated by 
colorectal cancer cells in the form of microvesicles, are 

Table 1  Dysregulation of miRNAs in PNI of tumor

Cancer type miRNA Regulation Target References

Pancreatic cancer miR-429 Downregulated NT-3 [14]

miR-191 Upregulated HRE2 [45, 84]

miR-21, miR-23a/miR-27a Upregulated PDCD、BTG2、NEDD4L [46]

miR-17 Upregulated PTEN [63]

miR-133a Downregulated EGFR [99]

miR-216 Downregulated YB-1 [122]

Cholangiocarcinoma miR-21 Upregulated RECK [47]

miR-31 Downregulated BAP-1, PBRM-1 [95]

miR-204 Downregulated CXCR4 [114]

Gastric cancer miR-589-3p, miR-141 Upregulated circ_0000419 [89]

Colorectal cancer miR-128-3p Upregulated Foxo4 [85]

miR-3679-5p Upregulated [86]

Prostate cancer miR-21, miR-99b/miR100, miR-24-2/miR-27a, miR-15a-2/ miR-195, miR-
224, miR-10 (a/b), miR-125b (− 1/2), miR-30a/b/c-2, miR-26a (− 1/2), 
miR-126, miR-145, miR-151, miR-181a-1, let-7g

Upregulated metallothionein [45]

miR-191 Upregulated HRE2 [84]

miR-124-3p Downregulated SARM1 [118]

HNSCC miR-137 Downregulated [117]

let-7d Upregulated [135]

OSCC miR-21 Upregulated PTEN [15]

miR-370 Downregulated IRS-1 [115]

miR-7 Downregulated RAF-1 [116]

let-7a Downregulated [134]

Sinonasal SCC miR-9-3p Upregulated [87]

Cutaneous SCC miR-205 Upregulated [88]
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transported to TAMs, where it weakens histone deacet-
ylase 11 (HDAC11) expression, consequently educating 
and accelerating their differentiation towards M2-like 
phenotype and boosting tumor progression [161]. MiR-
27a/b overexpression mediates a functional conversion 
of NFs into CAFs, which increases secretion of TGF-β, 

resulting in resistance of tumor cells to cisplatin in 
esophageal cancer [162]. MiR-199 upregulation could 
activate NFs and convert them into CAFs, enhancing 
proliferative and migratory capabilities of pancreatic 
cancer cell [163]. Cancer cell-released exosomal miR-21 
enhances angiogenesis and neoplastic processes [164], 

Fig. 4  Reciprocal interaction between PNI related-miRNAs and stromal cells in tumor. MiR23a, generated by tumor cell in niche, inactivates NK cells 
through directly targeting CD107 expression and impairs their cytotoxicity against tumor cells. MiR-27a/b and miR-199 overexpression mediates a 
functional conversion of NFs into CAFs, which increases secretion of TGF-β and miR-21 to enhance migration, invasion and resistance of tumor cells 
to cisplatin, or upregulates miR-16, miR-31 and miR-195 to inhibit proliferation, migration and invasion of tumor cell. MiR-145, released by colorectal 
cancer cells, is transported to TAMs and educates the differentiation of TAMs towards M2-like phenotype, boosting migration and invasion of tumor 
cells
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in turn, miR-21 released by CAFs is responsible for 
resistance of ovarian cancer cells to paclitaxel by target-
ing APAF1 [165].

Conversely, miR-31, an anti-PNI miRNA, was down-
regulated distinctly in CAFs from endometrial cancer, 
and restoration of miR-31 could cripple cell migration 
and invasion by directly downregulating its target SATB2 
[166]. CAF-derived exosomes could repress the growth, 
invasion and metastasis of tumor cell by carrying miR-
195 in cholangiocarcinoma [167]. Reduction of miR-16 
in CAFs facilitates proliferation and migration through 
reversing the post-transcriptional repression of Fgf-2 and 
its receptor Fgfr1 within the prostate cancer niche [168].

Conclusion and prospective
PNI is a harbinger of occult nodal spread, providing a 
challenge to tumor eradication and portending a negative 
prognostic implication in malignancy of colon, pancreas 
and prostate. Recent findings have highlighted the essen-
tial roles of miRNAs, which can act not only as oncogene 
but as tumor suppressor in PNI, and discuss the potential 
biological mechanisms of miRNAs in the formation of 
pre-PNI niches and the molecular basis. However, we still 
lack a systematic framework of the whole process of can-
cer cells to encroach on nerve, and the specific principles 
of miRNAs controlling PNI are much more intricate, the-
oretically, these following unresolved issues seem worthy 
of further exploration:

PNI and collective invasion
To encroach on nerve, tumor cells need to gain malignant 
phenotypes to detach from the primary tumor mass and 

evade the immune surveillance in neuro-tumor micro-
environment. Collective cell invasion is a movement pat-
tern of multiple cells that retain cell–cell connections and 
migrate coordinately, which is a fundamental property 
of many types of cancers [169]. Distinct from single-cell 
motility, this migrating cohesive groups comprise two 
distinct subpopulations, including leader cells (exploring 
the microenvironment at the invasive frontier, paving the 
way and orchestrating the movement of the whole clus-
ters) and follower cells (promoting leader cells polariza-
tion and influencing leader cells behavior to assist leader 
cells to acquire and consolidate leadership), maintain a 
front-rear polarity and cooperate in a hierarchical man-
ner to enhance persistent invasion [170]. How does miR-
NAs mediate PNI, through collective invasion, single cell 
invasion or both? (Fig. 5).

Circulating miRNAs and PNI
MiRNAs can be obtained from plasma, blood, urine, 
saliva, and other body fluids besides tumor tissues. 
Although the dysregulated expression of miRNAs has 
been reported to be significantly associated with vari-
ous kinds of human carcinoma and nerve remodeling, 
whether circulating miRNAs implicates in the facilitation 
of cancer PNI will be interesting to investigate.

Animal models and PNI
Most of the present data on miRNAs regulating PNI 
are actually derived from in  vitro cells. Animal mod-
els including orthotopic models and heterotopic mod-
els, which can recapitulate neural sprouting and neural 
tracking as it occurs in humans, assess the pain and 

Fig. 5  Prediction of PNI invasion pattern. MiRNAs constitutes a bridge of the crosstalk between tumor cells and stromal cells, including natural killer 
(NK) cells including regulatory T cells (Treg cells), tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs), and regulates the 
process of PNI. How does miRNAs mediate PNI, through collective invasion, single cell invasion or both?
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dysfunction related to cancer invasion and permit the 
images of tumor spreading by magnetic resonance, to 
allow a comprehensive investigation of miRNAs in PNI 
and provide preclinical evidence.

Therapeutic implications and PNI
MiRNA-based therapeutics including miRNA mim-
ics and antimiRs have been conducted over the years, 
whereas, only a small number of miRNA therapeutics 
have so far moved into clinical development due to the 
potential for degradation of oligonucleotides by RNases 
and difficulty in identification of the best miRNA can-
didates for each disease type. It is worth mentioning 
that in vitro and in vivo studies have revealed that miR-
NAs such as miR-200, let-7 and miR-34 could sensitize 
cancer cells to chemotherapy, and mimics of above 
miRNAs could be rationally combined with chemo-
therapeutics [171]. However, the synergistic effect of 
miRNAs with chemotherapeutics on PNI prevention 
remains margin.
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